1,037 research outputs found

    The Formation of the Double Pulsar PSR J0737-3039A/B

    Full text link
    Recent timing observations of the double pulsar J0737-3039A/B have shown that its transverse velocity is extremely low, only 10 km/s, and nearly in the Plane of the Galaxy. With this new information, we rigorously re-examine the history and formation of this system, determining estimates of the pre-supernova companion mass, supernova kick and misalignment angle between the pre- and post-supernova orbital planes. We find that the progenitor to the recently formed `B' pulsar was probably less than 2 MSun, lending credence to suggestions that this object may not have formed in a normal supernova involving the collapse of an iron core. At the same time, the supernova kick was likely non-zero. A comparison to the history of the double-neutron-star binary B1534+12 suggests a range of possible parameters for the progenitors of these systems, which should be taken into account in future binary population syntheses and in predictions of the rate and spatial distribution of short gamma-ray burst events.Comment: To appear in MNRAS Letters. Title typo fix only; no change to pape

    Pulsar Timing Observations and Tests of General Relativity in Double-Neutron-Star Binaries

    Get PDF
    We describe the techniques used in pulsar timing observations, and show how these observations may be applied to tests of strong-field general relativity for double-neutron-star binary systems. We describe the tests of GR resulting from the PSRs B1913+16 and B1534+12 systems. For the latter pulsar, 5 "Post-Keplerian" timing parameters are measurable, including the orbital period derivative and the two Shapiro delay parameters.Comment: Talk at Marcel-Grossmann meeting IX, Rome, 2000, to be published by World Scientific, 2 pages, no figure

    Pulsars: Gigantic Nuclei

    Full text link
    What is the real nature of pulsars? This is essentially a question of the fundamental strong interaction between quarks at low-energy scale and hence of the non-perturbative quantum chromo-dynamics, the solution of which would certainly be meaningful for us to understand one of the seven millennium prize problems (i.e., "Yang-Mills Theory") named by the Clay Mathematical Institute. After a historical note, it is argued here that a pulsar is very similar to an extremely big nucleus, but is a little bit different from the {\em gigantic nucleus} speculated 80 years ago by L. Landau. The paper demonstrates the similarity between pulsars and gigantic nuclei from both points of view: the different manifestations of compact stars and the general behavior of the strong interaction.Comment: 8 pages, 1 figures; Comments welcome

    PSR J1453+1902 and the radio luminosities of solitary versus binary millisecond pulsars

    Get PDF
    We present 3 yr of timing observations for PSR J1453+1902, a 5.79-ms pulsar discovered during a 430-MHz drift-scan survey with the Arecibo telescope. Our observations show that PSR J1453+1902 is solitary and has a proper motion of 8(2) mas/yr. At the nominal distance of 1.2 kpc estimated from the pulsar's dispersion measure, this corresponds to a transverse speed of 46(11) km/s, typical of the millisecond pulsar population. We analyse the current sample of 55 millisecond pulsars in the Galactic disk and revisit the question of whether the luminosities of isolated millisecond pulsars are different from their binary counterparts. We demonstrate that the apparent differences in the luminosity distributions seen in samples selected from 430-MHz surveys can be explained by small-number statistics and observational selection biases. An examination of the sample from 1400-MHz surveys shows no differences in the distributions. The simplest conclusion from the current data is that the spin, kinematic, spatial and luminosity distributions of isolated and binary millisecond pulsars are consistent with a single homogeneous population.Comment: 8 pages, 5 figures and 3 tables, accepted for publication by MNRA

    Parametric derivation of the observable relativistic periastron advance for binary pulsars

    Full text link
    We compute the dimensionless relativistic periastron advance parameter kk, which is measurable from the timing of relativistic binary pulsars. We employ for the computation the recently derived Keplerian-type parametric solution to the post-Newtonian (PN) accurate conservative dynamics of spinning compact binaries moving in eccentric orbits. The parametric solution and hence the parameter kk are applicable for the cases of \emph{simple precession}, namely, case (i), the binary consists of equal mass compact objects, having two arbitrary spins, and case (ii), the binary consists of compact objects of arbitrary mass, where only one of them is spinning with an arbitrary spin. Our expression, for the cases considered, is in agreement with a more general formula for the 2PN accurate kk, relevant for the relativistic double pulsar PSR J0737--3039, derived by Damour and Sch\"afer many years ago, using a different procedure.Comment: 12 pages including 1 figure; submitted to PR

    CoRoT measures solar-like oscillations and granulation in stars hotter than the Sun

    Full text link
    Oscillations of the Sun have been used to understand its interior structure. The extension of similar studies to more distant stars has raised many difficulties despite the strong efforts of the international community over the past decades. The CoRoT (Convection Rotation and Planetary Transits) satellite, launched in December 2006, has now measured oscillations and the stellar granulation signature in three main sequence stars that are noticeably hotter than the sun. The oscillation amplitudes are about 1.5 times as large as those in the Sun; the stellar granulation is up to three times as high. The stellar amplitudes are about 25% below the theoretic values, providing a measurement of the nonadiabaticity of the process ruling the oscillations in the outer layers of the stars.Comment: 7 pages, 4 figure
    • …
    corecore